On Error Bounds for Spline Interpolation

C. A. HALL

Mathematics Section, Bettis Atomic Power Laboratory, Westinghouse Electric Corp., West Mifflin, Pennsylvania 15122

1. INTRODUCTION

Error bounds for cubic spline interpolation have been derived by Birkhoff and de Boor [2]; Ahlberg, Nilson, and Walsh [1]; and Sharma and Meir [8]. Sharma and Meir also present error bounds for quintic spline interpolation. In this paper, explicit error bounds are derived which sharpen those given in [1, 2, 8]. The optimal error bounds for cubic (quintic) Hermite interpolation given in [4] are applied to elements of the vector space $Sp^{(2)}(\pi)$ ($Sp_1^{(3)}(\pi)$, see footnote 1) of cubic (quintic) splines over a mesh π , considered as a subspace, [5], of the smooth Hermite space $H^{(2)}(\pi)$, ($H^{(3)}(\pi)$).

For $\pi: a = x_0 < x_1 < ... < x_n = b$, let $h = \min_i \{x_i - x_{i-1}\}$, $h = \max_i \{x_i - x_{i-1}\}$ and $\beta = h/\underline{h}$. Let s(x) be the cubic spline associated with a function f defined on [a, b], and the mesh π . Thus, s is the unique element of $Sp^{(2)}(\pi)$ such that (i) $s(x_j) = f(x_j), j = 0, 1, ..., n$; (ii) $s'(x_j) = f'(x_j), j = 0, n$; and (iii) $s \in C^2[a, b]$. Further, let q(x) be the quintic spline (with three continuous derivatives) associated with f and π . Thus, q is the unique element of $Sp_1^{(3)}(\pi)$ such that (i) $q(x_j) = f(x_j), j = 0, 1, ..., n$; (ii) $q'(x_j) = f'(x_j), j = 0, 1, ..., n$; (iii) $q^{(2)}(x_j) = f^{(2)}(x_j), j = 0, n$; and (iv) $q \in C^3[a, b]$. [If g is defined on [a, b], let $\|g\| = \max\{|g(x)|: a \le x \le b\}$.]

The main results of this paper are contained in the following theorems, the proofs of which are given in Sections 2 and 3.

THEOREM 1. Let s be the cubic spline associated with $f \in C^4[a,b]$ and the partitioning π . Then

$$\|s^{(r)} - f^{(r)}\| \leq \epsilon_r \|f^{(4)}\| h^{4-r}, \qquad r = 0, 1, 2, 3$$
(1)

where $\epsilon_0 = 5/384$, $\epsilon_1 = (1/216)(9 + \sqrt{3})$, $\epsilon_2 = (1/12)(3\beta + 1)$, and $\epsilon_3 = (1/2)(\beta^2 + 1)$.

¹ In the following paper, quintic spline means an element of $Sp_1^{(3)}(\pi) \equiv P^3(\pi) \cap C^3[a,b]$ where $P^3(\pi)$ is the space of functions which reduce to quintic polynomials in each subinterval $[x_i, x_{i+1}]$. Thus in the notation of [5], $Sp^{(3)}(\pi) = Sp_1^{(3)}(\pi) \cap C^4[a,b]$.

THEOREM 2. Let q be the quintic spline associated with $f \in C^{6}[a,b]$ and the partitioning π . Then

$$\|q^{(r)} - f^{(r)}\| \leq \epsilon_r' \|f^{(6)}\|h^{6-r}, \qquad r = 0, 1, \dots, 5$$
(2)

where $\epsilon_0' = 1/15,360$, $\epsilon_1' = \sqrt{5}/30,000 + \sqrt{3}/12,960$, $\epsilon_2' = 11/5,760$, $\epsilon_3' = (1/60)(1/2 + \beta)$, $\epsilon_4' = (1/60)(6 + 5\beta^2)$, and $\epsilon_5' = (1/6)(3 + \beta^2)$.

The ϵ_r in (1) are considerably less in magnitude than the corresponding coefficients given in [1, 2]. For example, in [1, p. 32], $\epsilon_3 = 3 + 8(1+2\beta)\beta^2(1+3\beta)$ and $\epsilon_2 = (5/3)\epsilon_3$. In [2, p. 834], $\epsilon_3 = 3 + 6\beta(\beta+1)^2$ and $\epsilon_r = (r+1)\epsilon_{r+1}$ for r = 2, 1, 0.

In [8, p. 760], the authors prove, for $f \in C^{3}[a, b]$, that

$$\|s^{(r)} - f^{(r)}\| \leq [1 + \beta(1 + \beta)^2] h^{3-r} \omega(f^{(3)}, h), \qquad r = 0, 1, 2, 3,$$

where $\omega(f^{(3)}, .)$ is the modulus of continuity of $f^{(3)}$. In particular, if $f \in C^4[a,b]$ then $\omega(f^{(3)}, h) \leq ||f^{(4)}||h$, and the bounds in (1) are again sharper.

However, in [8, p. 759], the authors also prove, for $f \in C^2[a, b]$, that

$$\|s^{(2)} - f^{(2)}\| \le 5\omega(f^{(2)}, \bar{h}). \tag{3}$$

Now let \hat{s} be a cubic spline such that the piecewise linear polynomial $\hat{s}^{(2)}$ interpolates to $f^{(2)}$ on π . The cubic spline associated with $(f-\hat{s})$ and π is clearly $(s-\hat{s})$. Therefore, from (3),

$$||s^{(2)} - f^{(2)}|| = ||(s^{(2)} - \hat{s}^{(2)}) - (f^{(2)} - \hat{s}^{(2)})|| \le 5\omega(f^{(2)} - s^{(2)}, h).$$

But from [7], the error in the linear interpolation, $||f^{(2)} - s^{(2)}||$, is $\leq ||f^{(4)}||(h^2/2)$. Thus

$$\|s^{(2)} - f^{(2)}\| \le 5 \|f^{(4)}\| h^2, \tag{3'}$$

which yields a better bound than (1) for $\beta > 59/3$. This also establishes that $||s^{(2)} - f^{(2)}|| = O(h^2)$ independently of any restriction on the mesh ratio β . The author is indebted to Professor Carl de Boor for pointing out this latter result.

For quintic splines, it is also shown in [8, p. 764] that if $f \in C^3[a, b]$ then

$$\|q^{(r)} - f^{(r)}\| \le 26h^{3-r} \,\omega(f^{(3)}, h), \qquad r = 0, \, 1, \, 2, \, 3. \tag{4}$$

In particular, if $f \in C^{4}[a,b]$ then $\omega(f^{(3)},h) \leq ||f^{(4)}||h$, and the bounds in (2) are sharper.

However, if we let \hat{q} be a quintic spline such that $\hat{q}^{(2)}$ is the cubic spline associated with $f^{(2)}$ and π , then from (1), $\|\hat{q}^{(3)} - f^{(3)}\| \le \epsilon_1 \|f^{(6)}\|^{1/3}$. Now, the

quintic spline associated with $(f - \hat{q})$ and π is clearly $(q - \hat{q})$. Therefore, from (4),

$$||q^{(3)} - f^{(3)}|| = ||(q^{(3)} - \hat{q}^{(3)}) - (f^{(3)} - \hat{q}^{(3)})|| \le 26\omega(f^{(3)} - \hat{q}^{(3)}, \bar{h})$$

$$\le 52\epsilon_1 ||f^{(6)}||\bar{h}^3,$$
(4')

which yields a better bound than (2) for $\beta > (1/2)(259 + 260\sqrt{3}/9)$.

In Section 4, error bounds are presented for two-dimensional bicubic splines.

2. PROOF OF THEOREM 1

The proof of Theorem 1 is subdivided into a series of three lemmas. Since s'(x) in general does not interpolate to f'(x) at x_i , i = 1, 2, ..., n-1, it is natural to consider first $|s'(x_i) - f'(x_i)|$. For $f \in C^5[a, b]$ and a uniform mesh π , Birkhoff and de Boor [3] show this difference to be $O(h^4)$. For arbitrary meshes we have

LEMMA 1. Let π be an arbitrary partitioning of [a,b]. If $f \in C^{4}[a,b]$, then for each mesh point x_{i} ,

$$|s'(x_i) - f'(x_i)| \leq (1/24) ||f^{(4)}|| h^3, \qquad i = 0, \dots, n.$$
(5)

Proof. The condition that $s \in C^2[a,b]$ for s a cubic in each subinterval is equivalent to the following system of equations [3, p. 167]:

$$\begin{aligned} \mathcal{\Delta}x_{i}s_{i-1}' + 2(\mathcal{\Delta}x_{i} + \mathcal{\Delta}x_{i-1})s_{i}' + \mathcal{\Delta}x_{i-1}s_{i+1}' \\ &= 3[\mathcal{\Delta}x_{i}(\mathcal{\Delta}s_{i-1}/\mathcal{\Delta}x_{i-1}) + \mathcal{\Delta}x_{i-1}(\mathcal{\Delta}s_{i}/\mathcal{\Delta}x_{i})] \quad (6) \end{aligned}$$

(i = 1, 2, ..., n - 1), where $\Delta x_j = x_{j+1} - x_j$, $s_j = s(x_j)$, $s_j' = s'(x_j)$, and $\Delta s_j = s_{j+1} - s_j$.

One can show directly, using Taylor's formula (see Chapter 11 of [7] for a discussion on remainders) that

$$\begin{aligned} \Delta x_i f'_{i-1} + 2(\Delta x_i + \Delta x_{i-1}) f'_i + \Delta x_{i-1} f'_{i+1} \\ &= 3[\Delta x_i (\Delta f_{i-1} / \Delta x_{i-1}) + \Delta x_{i-1} (\Delta f_i / \Delta x_i)] \\ &+ (1/24) f^{(4)}(\xi_i) [\Delta x_i (\Delta x_{i-1})^3 + \Delta x_{i-1} (\Delta x_i)^3] \end{aligned}$$
(7)

(i = 1, 2, ..., n - 1), where $f_j = f(x_j), f'_j = f'(x_j)$ and $x_{j-1} \le \xi_j \le x_{j+1}$. Since $f_i = s_i, i = 0, ..., n$, and $f'_i = s'_i, i = 0, n$, we have from (6) and (7)

$$M\mathbf{E} = \mathbf{Z},\tag{8}$$

where $[\mathbf{E}]_i = s_i' - f_i'$, $[\mathbf{Z}]_i = (-1/24) f^{(4)}(\xi_i) [\Delta x_i (\Delta x_{i-1})^3 + \Delta x_{i-1} (\Delta x_i)^3]$ and

Multiply both sides of (8) by the diagonal matrix D, where

$$[D]_{ii} = 1/[2(\Delta x_i + \Delta x_{i-1})].$$

The matrix *DM* equals I + B, where $||B||_{\infty} = 1/2$ and by [9, p. 61], it follows that $||(DM)^{-1}||_{\infty} \leq 2$. The lemma follows from

$$\|\mathbf{E}\|_{\infty} \leq 2 \|D\mathbf{Z}\|_{\infty} \leq (1/24) \|f^{(4)}\| h^3.$$

If π is uniform and $f \in C^{5}[a,b]$, the remainder $[\mathbf{Z}]_{i}$ is obtained from the error term in Simpson's Rule and equals $(1/30) f^{(5)}(\xi_{i})(\Delta x_{i})^{5}$ for some $x_{i-1} \leq \xi_{i} \leq x_{i+1}$. The estimate (5) can then be replaced by

$$|s'(x_i) - f'(x_i)| \le (1/60) || f^{(5)} || h^4.$$
(5')

Note also that, under the weaker assumption $f \in C^3[a,b]$, the remainder [Z]_i equals (4/27) $f^{(3)}(\xi_i)[\Delta x_i(\Delta x_{i-1})^2 + \Delta x_{i-1}(\Delta x_i)^2]$, and so (5) can be replaced by

$$|s'(x_i) - f'(x_i)| \le (4/27) ||f^{(3)}|| h^2.$$
^(5'')

The piecewise cubic Hermite polynomial $u \in H^{(2)}(\pi)$ associated with f and π is by definition the unique piecewise cubic polynomial of class $C^1[a,b]$ such that (i) $u(x_j) = f(x_j), j = 0, 1, ..., n$ and (ii) $u'(x_j) = f'(x_j), j = 0, 1, ..., n$. Let $\bar{x} = x - x_{t-1}$ and $\Delta = \Delta x_{t-1}$. For $x_{t-1} \leq x \leq x_t$,

$$u(x) = H_1(\bar{x}) f_{i-1} + H_2(\bar{x}) f_i + H_3(\bar{x}) f_{i-1}' + H_4(\bar{x}) f_i',$$

where

$$\begin{aligned} H_1(\bar{x}) &= (1/\Delta^3)(2\bar{x}^3 - 3\Delta\bar{x}^2 + \Delta^3), \qquad H_2(\bar{x}) = (-1/\Delta^3)(2\bar{x}^3 - 3\Delta\bar{x}^2), \\ H_3(\bar{x}) &= (1/\Delta^2)(\bar{x}^3 - 2\Delta\bar{x}^2 + \Delta^2\bar{x}) \qquad \text{and} \qquad H_4(\bar{x}) = (1/\Delta^2)(\bar{x}^3 - \Delta\bar{x}^2). \end{aligned}$$

The following optimal error bounds for cubic Hermite interpolation are due to Birkhoff and Priver [4]:

LEMMA 2. For $f \in C^4[a, b]$,

$$||u^{(r)} - f^{(r)}|| \leq \alpha_r ||f^{(4)}|| \,\bar{h}^{4-r} \qquad r = 0, \, 1, \, 2, \, 3, \tag{9}$$

where $\alpha_0 = 1/384$, $\alpha_1 = \sqrt{3}/216$, $\alpha_2 = 1/12$, and $\alpha_3 = 1/2$.

Noting that $s \in Sp^{(2)}(\pi) \subseteq H^{(2)}(\pi)$, we next investigate the pointwise difference between $s^{(r)}$ and $u^{(r)}$.

LEMMA 3. For $f \in C^4[a,b]$,

$$\|u^{(r)} - s^{(r)}\| \leq \gamma_r \|f^{(4)}\| h^{4-r} \qquad r = 0, 1, 2, 3,$$
(10)

where $\gamma_0 = 1/96$, $\gamma_1 = 1/24$, $\gamma_2 = \beta/4$, and $\gamma_3 = \beta^2/2$.

Proof. From Lemma 1 we have, for $x_{i-1} \leq x \leq x_i$,

$$u(x) = s(x) - H_3(\bar{x})[\mathbf{E}]_{i-1} - H_4(\bar{x})[\mathbf{E}]_i.$$

Thus

$$\|u^{(r)} - s^{(r)}\| \leq (1/24) \|f^{(4)}\| \bar{h}^3 \{ \|H_3^{(r)}\| + \|H_4^{(r)}\| \}.$$
(11)

One can then verify directly that the quantity in braces is bounded by $\Delta/4$ for r = 0; 1 for r = 1; $6/\Delta$ for r = 2; and $12/\Delta^2$ for r = 3.

The proof of Theorem 1 follows from (9), (10), and the triangle inequality.

3. PROOF OF THEOREM 2

The piecewise quintic Hermite polynomial $v \in H^{(3)}(\pi)$ associated with f and π is the unique piecewise quintic polynomial of class $C^2[a,b]$ such that (i) $v(x_j) = f(x_j), j = 0, 1, ..., n$; (ii) $v'(x_j) = f'(x_j), j = 0, 1, ..., n$; and (iii) $v^{(2)}(x_j) = f^{(2)}(x_j), j = 0, 1, ..., n$. For $x_{i-1} \leq x \leq x_i$,

$$v(\bar{x}) = L_1(\bar{x}) f_{i-1} + L_2(\bar{x}) f_i + L_3(\bar{x}) f'_{i-1} + L_4(\bar{x}) f_i' + L_5(\bar{x}) f^{(2)}_{i-1} + L_6(\bar{x}) f^{(2)}_{i},$$
(12)

where

$$\begin{split} L_1(\bar{x}) &= (1/\Delta^5)(\Delta^5 - 10\Delta^2 \,\bar{x}^3 + 15\Delta \bar{x}^4 - 6\bar{x}^5), \\ L_2(\bar{x}) &= (1/\Delta^5)(10\Delta^2 \,\bar{x}^3 - 15\Delta \bar{x}^4 + 6\bar{x}^5), \\ L_3(\bar{x}) &= (1/\Delta^4)(\Delta^4 \,\bar{x} - 6\Delta^2 \,\bar{x}^3 + 8\Delta \bar{x}^4 - 3\bar{x}^5), \\ L_4(\bar{x}) &= (1/\Delta^4)(-4\Delta^2 \,\bar{x}^3 + 7\Delta \bar{x}^4 - 3\bar{x}^5), \\ L_5(\bar{x}) &= (1/2\Delta^3)(\Delta^3 \,\bar{x}^2 - 3\Delta^2 \,\bar{x}^3 + 3\Delta \bar{x}^4 - \bar{x}^5), \\ L_6(\bar{x}) &= (1/2\Delta^3)(\Delta^2 \,\bar{x}^3 - 2\Delta \bar{x}^4 + \bar{x}^5), \end{split}$$

and, as before, $\bar{x} = x - x_{i-1}$ and $\Delta = x_i - x_{i-1}$.

LEMMA 4. Let π be an arbitrary partitioning of [a,b]. If $f \in C^6[a,b]$, then for each mesh point x_i ,

$$q^{(2)}(x_i) - f^{(2)}(x_i) \leq (1/720) \| f^{(6)} \| \tilde{h}^4, \qquad i = 0, \dots, n.$$
(13)

Proof. Since $q \in H^{(3)}(\pi)$ we can use (12) to express q(x) on $[x_{i-1}, x_i]$ in terms of $q^{(k)}(x_j), k = 0, 1, 2; j = i - 1, i$. In particular, the condition that $q \in C^3[a, b]$, i.e., $q^{(3)}(x_i) = q^{(3)}(x_i), i = 1, ..., n - 1$, is equivalent to the following system of equations:

$$-\Delta x_{i}q_{i-1}^{(2)} + 3(\Delta x_{i} + \Delta x_{i-1})q_{i}^{(2)} - \Delta x_{i-1}q_{i+1}^{(2)}$$

$$= (4\Delta x_{i}/(\Delta x_{i-1})^{2})\{5q_{i-1} - 5q_{i} + 2\Delta x_{i-1}q_{i-1}' + 3\Delta x_{i-1}q_{i}'\}$$

$$+ (4\Delta x_{i-1}/(\Delta x_{i})^{2})\{5q_{i+1} - 5q_{i} - 2\Delta x_{i}q_{i+1}' - 3\Delta x_{i}q_{i}'\} \quad (14)$$

(i = 1, ..., n - 1).

One shows directly, using Taylor's formula, that

$$\begin{aligned} -\Delta x_i f_{i-1}^{(2)} + 3(\Delta x_i + \Delta x_{i-1}) f_i^{(2)} - \Delta x_{i-1} f_{i+1}^{(2)} \\ &= (4\Delta x_i/(\Delta x_{i-1})^2) \{5f_{i-1} - 5f_i + 2\Delta x_{i-1} f_{i-1}' + 3\Delta x_{i-1} f_i'\} \\ &+ (4\Delta x_{i-1}/(\Delta x_i)^2) \{5f_{i+1} - 5f_i - 2\Delta x_i f_{i+1}' - 3\Delta x_i f_i'\} \\ &+ (1/360) f^{(6)}(\xi_i) \{\Delta x_i(\Delta x_{i-1})^4 + \Delta x_{i-1}(\Delta x_i)^4\} \end{aligned}$$

(i = 1, 2, ..., n - 1), where $x_{j-1} \leq \xi_j \leq x_{j+1}$.

The remainder of the proof is omitted since it parallels the proof of Lemma 1.

Birkhoff and Priver [4] present the following optimal error bounds for quintic Hermite interpolation:

LEMMA 5. For $f \in C^6[a, b]$,

$$\|v^{(r)} - f^{(r)}\| \leq \alpha_r' \|f^{(6)}\|h^{6-r}, \qquad 0 \leq r \leq 5,$$
(15)

where $\alpha_0' = 1/46,080$, $\alpha_1' = \sqrt{5}/30,000$, $\alpha_2' = 1/1,920$, $\alpha_3' = 1/120$, $\alpha_4' = 1/10$, and $\alpha_5' = 1/2$.

The analogue of Lemma 3 for quintic splines is the following:

LEMMA 6. For $f \in C^{6}[a, b]$,

$$\|v^{(r)} - q^{(r)}\| \leq \gamma_r' \|f^{(6)}\| h^{6-r}, \qquad 0 \leq r \leq 5,$$
(16)

where $\gamma_0' = 1/23,040$, $\gamma_1' = \sqrt{3}/12,960$, $\gamma_2' = 1/720$, $\gamma_3' = \beta/60$, $\gamma_4' = \beta^2/12$, and $\gamma_5' = \beta^3/6$.

Proof. As in the proof of Lemma 3,

$$\|v^{(r)} - q^{(r)}\| \le (1/720) \|f^{(6)}\|h^4\{\|L_5^{(r)}\| + \|L_6^{(r)}\|\}.$$

One can verify that the quantity in braces is bounded by $\Delta^2/32$ for r = 0; $\sqrt{3}\Delta/18$ for r = 1; 1 for r = 2; $12/\Delta$ for r = 3; $60/\Delta^2$ for r = 4; and $120/\Delta^3$ for r = 5.

The proof of Theorem 2 follows from (15), (16), and the triangle inequality. Theorem 1 has the following corollary in light of (3'):

COROLLARY 1. As $h \to 0$ (independently of any mesh restriction), $s^{(r)}$ converges uniformly to $f^{(r)}$ in [a,b] for r = 0, 1, 2; in fact

$$||f^{(r)} - s^{(r)}|| = O(h^{4-r}), \quad r = 0, 1, 2.$$

After writing this paper, I discovered that Professor Carl de Boor had established, by other means, the results given in Corollary 1. [See his thesis: "The Method of Projections as Applied to the Numerical Solution of Two Point Boundary Value Problems Using Cubic Splines," p. 36. University of Michigan (1966).] He established the same order of convergence for the larger class of functions f, for which $f^{(3)}$ satisfies a Lipschitz condition.

Theorem 2 has the following corollary in light of (4'):

COROLLARY 2. As $h \to 0$ (independently of any mesh restriction), $q^{(r)}$ converges uniformly to $f^{(r)}$ in [a,b] for r = 0, 1, 2, 3; in fact,

$$||q^{(r)} - s^{(r)}|| = O(h^{6-r}), \quad r = 0, 1, 2, 3.$$

4. BICUBIC SPLINES

Two-dimensional bicubic splines were studied in [3, 6].

Let $\pi: X_1 = x_0 < x_1 < ... < x_n = X_2$; $Y_1 = y_0 < y_1 < ... < y_m = Y_2$ be a mesh refinement of a rectangular region $\mathscr{R} = [X_1, X_2] \times [Y_1, Y_2]$. The bicubic spline s(x, y) associated with the function f(x, y) and the mesh π is the unique [6] piecewise bicubic polynomial such that (i) $s_{ij} = f_{ij}$, i = 0, ..., n; j = 0, 1, ..., m; (ii) $s_{ij}^{(1,0)} = f_{ij}^{(1,0)}$, i = 0, n; j = 0, ..., m; (iii) $s_{ij}^{(0,1)} = f_{ij}^{(0,1)}$, i = 0, ..., n; j = 0, m; (iv) $s_{ij}^{(1,1)} = f_{ij}^{(1,1)}$, i = 0, n; j = 0, m; and (v) $s \in C^2[\mathscr{R}]$. Here and below, $g_{ij}^{(r,s)} = (\partial^{(r+s)}g/\partial x^r \partial y^s)(x_i, y_j)$.

For the mesh π , let

$$h = \max_{i} (x_{i} - x_{i-1}), \qquad \underline{h} = \min_{i} (x_{i} - x_{i-1}),$$

$$h' = \max_{i} (y_{i} - y_{i-1}), \qquad \underline{h}' = \min_{i} (y_{i} - y_{i-1})$$

and let $||g|| = \max\{|g(x,y)|: (x,y) \in \mathcal{R}\}$. The extension of Lemma 1 to the two-dimensional case is then

LEMMA 7. If
$$f \in C^{4}[\mathcal{R}]$$
, then for each mesh point (x_{i}, y_{j}) ,
 $|(s^{(1,0)} - f^{(1,0)})(x_{i}, y_{j})| \leq (1/24) ||f^{(4,0)}||h^{3},$
(17)

C. A. HALL

$$|(s^{(0,1)} - f^{(0,1)})(x_i, y_j)| \leq (1/24) ||f^{(0,4)}||(h')^3,$$
(18)

and

$$|(s^{(1,1)} - f^{(1,1)})(x_i, y_j)| \le (4/27) \{ ||f^{(3,1)}||h^2 + ||f^{(1,3)}||(h')^2 \} + (1/4) ||f^{(0,4)}||((h')^3/\underline{h}).$$
(19)

Proof. The bounds in (17) and (18) are immediate consequences of Lemma 1 and the way in which $s^{(1,0)}(x_i, y_j)$ and $s^{(0,1)}(x_i, y_j)$ are determined [6, p. 216]. It is also clear from (5") that

$$(s^{(1,1)} - f^{(1,1)})(x_i, y_j) | \leq (4/27) ||f^{(1,3)}||(h')^2$$
(20)

for i = 0, n and j = 1, 2, ..., m - 1. From [6] and (18), for j = 0, 1, ..., m,

$$\begin{aligned} \Delta x_{i} s_{i-1,j}^{(1,1)} + 2(\Delta x_{i} + \Delta x_{i-1}) s_{ij}^{(1,1)} + \Delta x_{i-1} s_{i+1,j}^{(1,1)} \\ &= 3[\Delta x_{i}\{(s_{ij}^{(0,1)} - s_{i-1,j}^{(0,1)})/\Delta x_{i-1}\} + \Delta x_{i-1}\{(s_{i+1,j}^{(0,1)} - s_{ij}^{(0,1)})/\Delta x_{i}\}] \\ &= 3[\Delta x_{i}\{(f_{ij}^{(0,1)} - f_{i-1,j}^{(0,1)})/\Delta x_{i-1}\} + \Delta x_{i-1}\{(f_{i+1,j}^{(0,1)} - f_{ij}^{(0,1)})/\Delta x_{i}\}] \\ &+ \phi_{ij} \qquad (i = 1, 2, ..., n-1), \end{aligned}$$
(21)

where ϕ_{ij} is the error in the right-hand side induced by the errors $(s_{ij}^{(0, 1)} - f_{ij}^{(0, 1)})$ and $|\phi_{ij}| \leq [1/4\Delta x_i \Delta x_{i-1}](\Delta x_{i-1}^2 + \Delta x_i^2)(h')^3 ||f^{(0, 4)}||$.

With M as defined in Section 2, we have from (7), (20), and (21),

$$M\mathbf{E}_j = \mathbf{Z}_j + \mathbf{\psi}_j + \mathbf{\phi}_j, \qquad (22)$$

where $[\mathbf{E}_{j}]_{l} = (s_{ij}^{(1,1)} - f_{ij}^{(1,1)}), \ [\mathbf{\phi}_{j}]_{l} = \phi_{lj}, \ [\mathbf{\psi}_{j}]_{l} = 0 \text{ for } i \neq 1, \ n-1,$

 $[\mathbf{\psi}_j]_1 = \Delta x_1 (f_{0j}^{(1,1)} - s_{0j}^{(1,1)}), \qquad [\mathbf{\psi}_j]_{n-1} = \Delta x_{n-2} (f_{nj}^{(1,1)} - s_{nj}^{(1,1)}),$

and

$$[\mathbf{Z}_{j}]_{i} = (4/27) f^{(3,1)}(\xi_{i}) [\Delta x_{i} (\Delta x_{i-1})^{2} + \Delta x_{i-1} (\Delta x_{i})^{2}].$$

Multiplying both sides of (22) by the matrix D of Section 2, we note that

$$\|D\mathbf{Z}\|_{\infty} \leq (2/27) \|f^{(3,1)}\|h^{2}, \qquad \|D\mathbf{\psi}_{j}\|_{\infty} \leq (2/27) \|f^{(1,3)}\|(h')^{2}, \\ \|D\mathbf{\varphi}_{j}\|_{\infty} \leq (1/8) \|f^{(0,4)}\|(h')^{3}/\underline{h}, \qquad \text{and} \qquad \|(DM)^{-1}\|_{\infty} \leq 2.$$

The result (19) then follows immediately from

$$\|\mathbf{E}_j\|_{\infty} \leq \|(DM)^{-1}\|_{\infty}\{\|D\mathbf{Z}_j\|_{\infty} + \|D\boldsymbol{\psi}\|_{\infty} + \|D\boldsymbol{\varphi}\|_{\infty}\}.$$

The piecewise bicubic Hermite polynomial u associated with f and π is the unique piecewise bicubic of class $C^1[\mathscr{R}]$ such that $u^{(r,s)}$ interpolates to $f^{(r,s)}$, for $0 \le r$, $s \le 1$, at each mesh point of π . For a fixed i and j, let $\bar{x} = x - x_{i-1}$, $\bar{y} = y - y_{j-1}$, $\Delta = \Delta x_{i-1}$ and $\Delta' = \Delta y_{j-1}$. For $x_{i-1} \le x \le x_i$ and $y_{j-1} \le y \le y_j$,

$$u(x,y) = \sum_{k=1}^{2} \sum_{\ell=1}^{2} \{H_{k}(\bar{x}) G_{\ell}(\bar{y}) f_{k\ell} + H_{k+2}(\bar{x}) G_{\ell}(\bar{y}) f_{k\ell}^{(1,0)} + H_{k}(\bar{x}) G_{\ell+2}(\bar{y}) f_{k\ell}^{(0,1)} + H_{k+2}(\bar{x}) G_{\ell+2}(\bar{y}) f_{k\ell}^{(1,1)}\},$$
(23)

216

where $f_{k\ell} = f_{i-2+k, j-2+\ell}, \dots, f_{k\ell}^{(1,1)} = f_{i-2+k, j-2+\ell}^{(1,1)}$, the $H_k(\bar{x})$ are given in Section 2, and $G_\ell(\bar{y})$ is obtained from $H_\ell(\bar{x})$ by replacing \bar{x} by \bar{y} and Δ by $\Delta', \ell = 1, 2, 3, 4$. Comparing u(x, y) and s(x, y), we have:

Lemma 8. For
$$f \in C^4[\mathscr{R}]$$
 and $0 \le i + j \le 3$,
 $\|u^{(i,j)} - s^{(i,j)}\| \le (1/24)\{\theta_{ij1}\|f^{(4,0)}\|\bar{h}^3 + \theta_{ij2}\|f^{(0,4)}\|(\bar{h}')^3\} + \theta_{ij3}\{(4/27)[\|f^{(3,1)}\|\bar{h}^2 + \|f^{(1,3)}\|(\bar{h}')^2] + (1/4)\|f^{(0,4)}\|(\bar{h}')^3/\bar{h}\}$

where

θ_{ij1}	<i>j</i> = 0	j = 1	<i>j</i> = 2	<i>j</i> = 3
i = 0 i = 1 i = 2 i = 3	$ \frac{\hbar/4}{1} $ $ \frac{6/\underline{h}}{12/\underline{h}^2} $	3 <i>ħ/4<u>ħ</u>' 3/<u>ħ'</u> 18/<u>ħħ</u>'</i>	$\frac{3\hbar/(\underline{h}')^2}{12/(\underline{h}')^2}$	$6h/(\underline{h}')^3$

 θ_{ij2} equals θ_{ji1} with h, \underline{h} interchanged with \underline{h}' and \underline{h}' , respectively, and

θ_{ij3}	<i>j</i> = 0	j = 1	<i>j</i> = 2	<i>j</i> = 3
i = 0 i = 1 i = 2 i = 3	$ \begin{array}{c} hh'/16\\ h'/4\\ 3h'/2h\\ 3h'/2\underline{h}^2 \end{array} $	h/4 1 6/ <u>h</u>	3 <i>h</i> /2 <u>h</u> ′ 6/ <u>h</u> ′	$3h/(\underline{h}')^2$

Proof. In the spirit of the proof of Lemma 3 and using Lemma 7,

$$\begin{split} \|u^{(i, J)} - s^{(i, J)}\| &\leq \left\{ (1/24) \|f^{(4, 0)}\| h^3 \sum_{k=1}^2 \sum_{\ell=1}^2 |H^{(i)}_{k+2}(\bar{x}) G^{(J)}_{\ell}(\bar{y})| \\ &+ (1/24) \|f^{(0, 4)}\| (h')^3 \sum_{k=1}^2 \sum_{\ell=1}^2 |H^{(i)}_k(\bar{x}) G^{(J)}_{\ell+2}(\bar{y})| \\ &+ [(4/27)(h^2\| f^{(3, 1)}\| + (h')^2\| f^{(1, 3)}\|) \\ &+ (1/4)((h')^3/h) \|f^{(0, 4)}\|] \\ &\times \sum_{k=1}^2 \sum_{\ell=1}^2 |H^{(i)}_{k+1}(\bar{x}) G^{(J)}_{\ell+1}(\bar{y})| \right\}. \end{split}$$

To complete the proof, one computes directly the bounds θ_{ij1} , θ_{ij2} , θ_{ij3} for the three summations in this expression.

C. A. HALL

COROLLARY 3. If $f \in C^4[\mathcal{R}]$ and h/h is bounded as $h \to 0$, then

$$||u - s|| = O(h^4)$$
 as $h \to 0$, (24)

where $h = \max\{h, h'\}$. Further, if (h/\underline{h}') and (h'/\underline{h}) are bounded as $h \to 0$, then, for $0 \le i + j \le 3$,

$$||u^{(i, j)} - s^{(i, j)}|| = O(h^{4 - (i+j)})$$
 as $h \to 0.$ (25)

Error bounds for bicubic Hermite interpolation are given in [10, Theorem 4 and Corollary 7] for $f \in K_{\infty}^{2}[\mathscr{R}] \supseteq C^{4}[\mathscr{R}]$. Combining these bounds with (24) and (25), we have the following theorem establishing the uniform convergecen of $s^{(i, j)}$ to $f^{(i, j)}$ for $0 \le i + j \le 3$.

THEOREM 3. Let s be the bicubic spline associated with $f \in C^4[\mathscr{R}]$ and the partitioning π . If h/h is bounded as $h \to 0$, then

 $||s-f|| = O(h^4) \quad \text{as} \quad h \to 0.$

Further, if (h/h') and (h'/h) are bounded as $h \rightarrow 0$, then, for $0 \le i + j \le 3$,

$$||s^{(i,j)} - f^{(i,j)}|| = O(h^{4-(i+j)})$$
 as $h \to 0$.

REFERENCES

- 1. J. AHLBERG, E. NILSON, AND J. L. WALSH, "The Theory of Splines and Their Applications." Academic Press, New York, 1967.
- 2. G. BIRKHOFF AND C. DE BOOR, Error bounds for spline interpolation. J. Math. Mech. 13 (1964), 827-835.
- 3. G. BIRKHOFF AND C. DE BOOR, Piecewise polynomial interpolation and approximation. In "Approximation of Functions" (H. Garabedian, ed.). Elsevier, Amsterdam, 1965.
- 4. G. BIRKHOFF AND A. PRIVER, Hermite interpolation errors for derivatives. J. Math. and Phys. 46 (1967), 440-447.
- 5. P. CIARLET, M. SCHULTZ, AND R. VARGA, Numerical methods of higher-order accuracy for nonlinear boundary value problems. *Num. Math.* **9** (1967), 394–430.
- 6. C. DE BOOR, Bicubic spline interpolation. J. Math. and Phys. 41 (1962), 212-218.
- R. W. HAMMING, "Numerical Methods for Scientists and Engineers." McGraw-Hill, New York, 1962.
- A. SHARMA AND A. MEIR, Degree of approximation of spline interpolation. J. Math. Mech. 15 (1966), 759-767.
- 9. J. WILKINSON, "The Algebraic Eigenvalue Problem." Oxford Univ. Press, New York, 1965.
- G. BIRKHOFF, M. SCHULTZ, AND R. VARGA, Smooth Hermite interpolation for rectangles with applications to elliptic differential equations. *Num. Math.* 11 (1968), 232–256.