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1. INTRODUCTION

Error bounds for cubic spline interpolation have been derived by Birkhoff
and de Boor [2]; Ahlberg, Nilson, and Walsh [/]; and Sharma and Meir [8].
Sharma and Meir also present error bounds for quintic spline interpolation.
In this paper, explicit error bounds are derived which sharpen those given in
[1, 2, 8]. The optimal error bounds for cubic (quintic) Hermite interpolation
given in [4] are applied to elements of the vector space Sp@)(#) (Sp{*(7), see
footnote 1) of cubic (quintic) splines over a mesh =, considered as a subspace,
[51, of the smooth Hermite space H ?)(x), (H ®)(m)).

Formia=x,<x,<...<X,=b, let h = min{x; — x;_,}, h =max; {x;—x;_}
and B = h/h. Let s(x) be the cubic spline associated with a function f defined
on [a,b], and the mesh 7. Thus, s is the unique element of Sp®)(r) such that
D s(x;)=f(xp,j=0,1,...,m; (i) 5'(x;) = f '(x;),j =0, n; and (iii) s € C?[a,b].
Further, let g(x) be the quintic spline (with three continuous derivatives)
associated with f and 7. Thus, g is the unique element of Sp{¥(=) such that
® qx)=f(xp, j=0, 1, ..., n; (i) ¢'(x)=f"(x), j=0, 1, ..., n; (iii)
g¥(x)) =f(x,), j=0, n; and (iv) g € C3[a,b]. [If g is defined on [a,b], let
gl = max{|g()| :a < x <b}.]

The main results of this paper are contained in the following theorems, the
proofs of which are given in Sections 2 and 3.

THEOREM 1. Let s be the cubic spline associated with e C*[a,b] and the
partitioning m. Then

s —f Ol < el f DU, r=0,1,2,3 )

where eg=5/384, €, =(1/216)9 +V/3), , = (1/12)(38+1), and €, = (1/2)(B*+ 1).

! In the following paper, guintic spline means an element of Sp{¥ (=) = P3(#) n C3[a,b]
where P3*(7) is the space of functions which reduce to quintic polynomials in each subinterval
[x1,x:+1]. Thus in the notation of [5], Sp® (=) = Sp{®(#) N C4[a,b).
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THEOREM 2. Let g be the quintic spline associated with fe C®[a,b] and the
partitioning . Then

lg" —f Ol <& If O, r=0,1,...,5 @

where ' =1/15,360, €’ =/5/30,000 + v/3/12,960, e,’ =11/5,760,
&3’ = (1/60)(1/2 + B), €," = (1/60)(6 + 5B2), and 5" = (1/6)(3 + B?).

The €, in (1) are considerably less in magnitude than the corresponding
coefficients givenin [/, 2]. For example, in [1, p. 32], ;=3 +8(1 +28)82(1 +3B)
and e, = (5/3)€;. In [2, p. 834], €; =3 +68(B+ 1) and ¢, =(r + e, for
r=2,1,0.

In [8, p. 760], the authors prove, for fe C3[a,b], that

s —f O <[l + B+ BARTw(f k), r=0,1,2,3,

where w(f),.) is the modulus of continuity of f©). In particular, if
f€ C*a,b] then w( f ), h) < || f *| h, and the bounds in (1) are again sharper.
However, in [8, p. 759], the authors also prove, for f'e C3[q, b], that

Is@ — f O < Sw(f 2, h). 3)

Now let § be a cubic spline such that the piecewise linear polynomial §@
interpolates to f® on . The cubic spline associated with (f—§) and = is
clearly (s — §). Therefore, from (3),

62— f @ = (5@ = §2) — (f = 5] < Sl £ — 5, ).

But from [7], the error in the linear interpolation, | f® —s®@)|, is
< |I.f @I(h?/2). Thus

s —f P < 5| f @ k2, (39

which yields a better bound than (1) for 8> 59/3. This also establishes that

ls® — f @) = O(h?) independently of any restriction on the mesh ratio B. The

author is indebted to Professor Carl de Boor for pointing out this latter result.
For quintic splines, it is also shown in [8, p. 764] that if f € C3[q,b] then

g™ —f O <26B* " (£ O,h),  r=0,1,2,3. @

In particular, if fe C*[a,b] then w(f ), k) < || f @)k, and the bounds in (2)
are sharper.

However, if we let § be a quintic spline such that §® is the cubic spline
associated with £ @ and =, then from (1), [[§® — f @) < €| £ ©||h*. Now, the
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quintic spline associated with ( f— §) and = is clearly (g — §). Therefore, from
@,
g% —f B0 =g ~ 4 = (f D = GO < 26w(f ¥ = 4, )
< 52¢|l f O B3, 4)

which yields a better bound than (2) for 8> (1/2)(259 + 260/3/9).
In Section 4, error bounds are presented for two-dimensional bicubic splines.

2. PROOF OF THEOREM 1

The proof of Theorem 1 is subdivided into a series of three lemmas. Since
8'(x) in general does not interpolate to f'(x) at x;, i=1,2, ..., n—1, it is
natural to consider first |s'(x;) — f'(x;)|. For fe C*[a,b] and a uniform mesh
7, Birkhoff and de Boor [3] show this difference to be O(h*). For arbitrary
meshes we have

LeEMMA 1. Let 7 be an arbitrary partitioning of [a,bl. If f € C*[a,b], then for
each mesh point x;,

IS'Ced) ~f "Gl < Q29I f DU, i=0,..,n. &)

Proof. The condition that s € C?[a,b] for s a cubic in each subinterval is
equivalent to the following system of equations [3, p. 1671:

Axi s;—l + Z(Ax, + Ax,_l) Sil + Axi_l S;+1
= 3[dx(ds;_1/Ax,y) + Adx,_(ds,/Ax)]  (6)
((=12,..,n—1), where dx;=x;,, —x; s5;=s(x;), s/ —=5(x;), and
Asj =S8jr1 — ;e
One can show directly, using Taylor’s formula (see Chapter 11 of [7] for a
discussion on remainders) that
Ax, [y + 2045+ Ax ) £ + A%y [
= 3[dx(4f,_/Ax:_)) + Ax,_y(4fi/Ax)]
+(1/24) fOENAx(dx, ) + dx,(dx)*] (7)

(i=1,2,...,n—1), where f; =1 (x)), f; =f'(x)) and x;_; < §; < X4
Since f; == 8,,i =0, ..., n,and f; =s,’, i =0, n, we have from (6) and (7)

ME-1Z, (8)
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where [E], =5, — f, [Z], = (-=1/24) f D) [Ax(4x;_)* + Ax,_,(4x;)*] and

[2(4x0 + 4x,) Axq T
Ax, 2(dx, + dx,)
M=
Axn—]
L Q Axn—l 2(Axn—-z + Axn—l) -

Multiply both sides of (8) by the diagonal matrix D, where
(D] = 1/[2(dx, + 4x,_p)].

The matrix DM equals I + B, where ||Bll, = 1/2 and by [9, p. 61], it follows
that [(DM)™!||, < 2. The lemma follows from

IEll, < 2IDZIL, < (1/24)]] f ®| .

If 7 is uniform and f'e C3[a,b], the remainder [Z], is obtained from the
error term in Simpson’s Rule and equals (1/30) f©(£)(4x;)® for some
x;1 < & < x14,. The estimate (5) can then be replaced by

Is'Ge)) = f"Gel < (/60 f Olj . ()

Note also that, under the weaker assumption fe C3[a,b], the remainder
[Z], equals (4/27) f (NI x(Ax;_)? + Ax;_,(dx))?], and so (5) can be re-
placed by

|s'"Ge) = f "Gl < @2D f DN R ()

The piecewise cubic Hermite polynomial u € H ?)X(7) associated with f and
 is by definition the unique piecewise cubic polynomial of class C'[a,b] such
that (i) w(x;) =f(x;),j=0, 1, ...,nand (i) &'(x;) =f'(x),j=0,1, ..., n. Let
¥=x—x;,and 4 =4dx,_,. For x,_; < x < x,,

u(x) = H\(%) fi_y + Hy(X) fi + Hy(X) fiLy + Hy(®) fi,
where

H(R) = (1/4)Q53 - 3452 + 4%,  Hy(F) = (—1/4%)(23 — 3453,
Hy®) =(1/4%)F — 2452 + A2%)  and  H,(%) = (1/4%)F — 452).

The following optimal error bounds for cubic Hermite interpolation are
due to Birkhoff and Priver [4]:
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LEMMA 2. For fe C*a,b),
u® —f O <ol f B AT r=0,1,2,3, ®)
where og = 1/384, a; = V/'3/216, oy = 1/12, and oy = 1/2.

Noting that s € Sp'®(m) € H@(7), we next investigate the pointwise dif-
ference between s and u.

LeEMMA 3. For fe C*a,b],
) — s <y, |l f @) A r=0,1,2,3, (10)
where v, = 1/96, y, = 1/24, y, = /4, and v, = 8%/2.

Proof. From Lemma 1 we have, for x;_; < x < x;,

u(x) = s(x) — Hy(D[E]i-; — H(X)[E];.
Thus
4™ — s©) < (/2411 f DN B{IH! + [HB. (1)

One can then verify directly that the quantity in braces is bounded by 4/4 for
r=0;1forr=1;6/4 forr=2;and 12/42 for r =3,
The proof of Theorem 1 follows from (9), (10), and the triangle inequality.

3. PROOF OF THEOREM 2

The piecewise quintic Hermite polynomial v € H ®)(r) associated with fand
@ is the unique piecewise quintic polynomial of class C?{a,b] such that (i)
x)=f(xp), j=0, 1, ..., n; (i) v'(x))=f"(x;), j=0, 1, ..., n; and (iii)
v (x)=fP(x,),j=0,1,...,n Forx,_; <x<x,
0(%) = Ly(®) fiiy + Ly(®) f; + Ly(®) fioy + La(®) i + Ls(R) £ & + Lo(R) £ 2,
12)
where
Ly(%) = (1/45)(4° — 1042 2 + 15434 — 65°),
L,(%) = (1/4%)(1042% %3 — 154%* + 67°),
Ly(%) = (1/4%(4* % — 642 3* + 84%* — 3%),
L(%) = (1/4%)(—442 %3 + 743%* — 35°),
Ly(%) = (1/24%(43 2 — 34% %3 + 345%* — %),
L) = (1/24%)(4% 7 — 24%* + 55),

and, as before, *=x—x,_;and 4 = x; — x;_,.
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LEMMA 4. Let m be an arbitrary partitioning of {a,b). If f € C%{a,b), then for
each mesh point x;,

lg®x) —f D) <720)1 f ©A*,  i=0,..,n. (13)

Proof. Since g € H®) (=) we can use (12) to express g(x) on [x,_;,x;] in terms
ofg®)(x,),k=0,1,2;j=1i—1, i In particular, the condition that g € C?[a,b],
ie., q¥(x~) =¢¥(x+),i=1,...,n—1, is equivalent to the following system
of equations:

—Ax,q8P) + 3(dx, + Ax,_ ) g8 — Ax,1 9

= (44x,/(Ax,_ )59, 1 — 5q: + 24x,_, g1 + 34x,19/}
+ (44x,_/(Ax)H{5G41 — 59 — 24x,93, — 34x,q/}  (14)
(i=1,..,n=1).
One shows directly, using Taylor’s formula, that
—dx, f P+ 3dx + Ax, ) P — Adx,y [ B
= (4dx, J(Ax,_ )Ny — i+ 24x, i+ 34x, 1}
+ (44, /(Ax ) S rs = S — 24, f 1 = 34x, 1}
+ (1/360) f O(EN{Ax(Ax;_1)* + Ax;_(dx;)*}
(i=1,2,..,n—1), where x,_; < &; < x,.,.

The remainder of the proof is omitted since it parallels the proof of Lemma

1

Birkhoff and Priver [4] present the following optimal error bounds for
quintic Hermite interpolation:

LeEMMA 5. For fe C%[a,b],
o0 —f O <&/ | fOI R, O<r<S, (15)
where oy’ = 1/46,080, a," = V/5/30,000, &’ = 1/1,920, a;" = 1/120, «," = 1/10,
and a5’ =1/2.
The analogue of Lemma 3 for quintic splines is the following:
LEMMA 6. For f € C%[a,b],
[0 — gl <y I f QYRS  O0<r<S5, (16)
where v, =1/23,040, y,' = Vv/3/12,960, y,' =1/720, v’ = B/60, v, = B*/12,
and ys' = B3/6.
Proof. As in the proof of Lemma 3,
0®) — gl < (/7201 £ OURILEN + ILE 11}
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One can verify that the quantity in braces is bounded by 42/32 for r =0;
V34/18 for r=1; 1 for r = 2; 12/4 for r = 3; 60/42 for r = 4; and 120/4? for
r=>5.
The proof of Theorem 2 follows from (15), (16), and the triangle inequality.
Theorem 1 has the following corollary in light of (3'):

COROLLARY 1. As h — 0 (independently of any mesh restriction), s con-
verges uniformly to f ") in [a,b] for r =0, 1, 2; in fact

I f© — s =0k, r=0,1,2.

After writing this paper, I discovered that Professor Carl de Boor had
established, by other means, the results given in Corollary 1. [See his thesis:
“The Method of Projections as Applied to the Numerical Solution of Two
Point Boundary Value Problems Using Cubic Splines,” p. 36. University of
Michigan (1966).] He established the same order of convergence for the larger
class of functions f, for which f ) satisfies a Lipschitz condition.

Theorem 2 has the following corollary in light of (4'):

COROLLARY 2. As b — 0 (independently of any mesh restriction), ¢ con-
verges uniformly to £ ) in {a,b] for r =0, 1, 2, 3, in fact,

g™ — s = OhS™), r=0,1,2,3.

4. BICUBIC SPLINES

Two-dimensional bicubic splines were studied in [3, 6].

Letm: X=X <X, <...<Xp=X,; Y=y <y; <...<ys,= Y,beamesh
refinement of a rectangular region Z = [ X, X,] x [Y;, Y,]. The bicubic spline
s(x,y) associated with the function f(x,y) and the mesh = is the unique [6]
piecewise bicubic polynomial such that (i) s;; =f;;, i=0,...,n;7=0,1, ..., m;
() s O =f40 i=0,n;j=0,...,m; (i) s V=D i=0,...,n;j=0m;
@iv) s V=D, =0, n; j=0, m; and (v) s€ C*[#]. Here and below,
g4y s = (80 g[0x" 3y W x1, ;)

For the mesh 7, let

h = max, (x; — x;_y), h = min; (x; — x,_,),
B = max, (y, —Yi-1) h'=min; (y; — yi_y)

and let [|gll = max {]g(x,»)]:(x,y) € #}. The extension of Lemma 1 to the
two-dimensional case is then

LeMMA 7. If f € C*Z), then for each mesh point (x,,y,),
(s — f © ) x, p))| < (1)28)i1 f O 2, a7
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(@D — £ O D)xy, y ) < (1/28)] £ © DR, (18)
and
|58 — £ D)y, yp)| < @2TLf @ DR + 11 F & DR
+ (/A1 f O DIEY . (19)

Proof. The bounds in (17) and (18) are immediate consequences of Lemma 1
and the way in which s> 9(x;,y;) and s© U(x,,y,) are determined {6, p. 216].
It is also clear from (5") that

|50 = f A D)xi, y )] < @27 f DR (20)

fori=0,nandj=1,2,...,m—1.
From [6] and (18), for j=0, 1,

Axy sty + 2(dx, + dx ) sip P + Ax, e
= 3[Axi{(s(0 b 5(01”1 A%} + Ax; 1{(553-11)1 - 553’ l))/Axi}]
= 3[Axi{(f(0 D—f 1))/Axl 3+ Ax {8 —f§ D) Ax )

where ¢, ;isthe errorin the rlght hand side induced by the errors (s{" ¥ — £{9- 1)
and [¢;| < [1/4dx,dx,_, J(AxF_ + Ax AR} || O 2|}
With M as defined in Section 2, we have from (7), (20), and (21),

ME;=Z;+ ¢, + d; (22)
Where [EJ]i = (s(l b_ (1 1)) [4)1]1 = 96113 [q)J = 0 fOI‘ l:,vé 1 n— ]
[4’1]1 - Axl(f(l b SOTI" 1))’ [“pj]n—l =dx —Z(f“ b Sr(I}‘ 1))3

and
[Z,]; = (4/27) f & D(EY[Ax(dx;_)* + Ax,_y(dx)*].

Multiplying both sides of (22) by the matrix D of Section 2, we note that
IDZ]l, < Q2DILf V1A%, 1Dl < Q271 ¢ D)(R)?,
1Dl </BISC#NHY /b, and  [(DM)[|, < 2.
The result (19) then follows immediately from
IEjllo < I(DM)lo{l DZ;llx + 1 DYl + [ Depll}-

The piecewise bicubic Hermite polynomial u associated with fand = is the
unique piecewise bicubic of class C![#] such that u™ ) interpolates to f ),
for 0 < r, s < 1, at each mesh point of . For a fixed i and j, let ¥ =x — x;_,,
J=y—Y;1,d=4dx,_yand 4" = Ay, ;. Forx,_; <x<xand y;, ; <y<y,

ux,y) = Z E {H(%) GL(5) fiw + Hiro(®) GA(9) 10

+ Hy(%) Groa(D) 1§V + Hyao(R) Graa(F) f P}, 23)
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WHETe fyr = fian. 324 -+ 01 = £ 950, ;3 20 the Hy(%) are given in Section
2,and G4(p)is obtained from H,(x) by replacing by yand A by 4',/ = 1,2, 3, 4.
Comparing u(x,y) and s(x, y), we have:

LeMMA 8. For fe C*HR) and 0 < i+ <3,
60D — DI < (1/24){0,11 f 4 OB + 6,55]1 f O DUI(R')*}

+ 00 {42DULf C VIR + (1Lf DI
+ (/NS O DURY B

where
01 Jj=0 Jj=1 j=2 Jj=3
i=0 WA 3k KGR
i= 1 3 12/(hY?
i=2 6/h 18/hh'
i=3 12/h?

6,;, equals 8, with A, h interchanged with 4’ and 4’, respectively, and

Biss j=0  j=1 j=2  j=3
i=0 RR' /16 Ria 3kl 3hjH)?
i=1 4 1 6/’
i=2 3K [2h 6/h
i=3 3k |20

Proof. In the spirit of the proof of Lemma 3 and using Lemma 7,

0 s fapir o 55 HLE 680
k=1 ¢=1

HAPDIL OO S S O G

+ [@2T)R2 £ O D)+ ELL )
+ (/AR YD) f 1]

xS S HL® Gmov)l}.

k=1 ¢=1

To complete the proof, one computes directly the bounds 8,;,, 8,,,, 0,;; for
the three summations in this expression.
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COROLLARY 3. If f'e C*[%) and h/h is bounded as h — 0, then
lu — s|| = O(h*) as h—0, (24)

where h = max {h,l'}. Further, if (h/h') and (k' [h) are bounded as h — 0, then,
JorO<i+j<3,

[t D — 56D = O4-U+D)  as B —0. (25)

Error bounds for bicubic Hermite interpolation are given in [/0, Theorem 4
and Corollary 7] for fe K2[#]= C*[#]. Combining these bounds with (24)
and (25), we have the following theorem establishing the uniform convergecen
of st Nto fDfor0<i+j<3.

THEOREM 3. Let s be the bicubic spline associated with f € C*[#)] and the
partitioning m. If hjh is bounded as h — 0, then

ls—fll=0®*) as h—0.
Further, if (h/h') and (I’ [h) are bounded as h — 0, then, for 0 <i+j<3,
IS D — D = OG- as B0,
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