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1. INTRODUCTION

Error bounds for cubic spline interpolation have been derived by Birkhoff
and de Boor [2]; Ahlberg, Nilson, and Walsh [1]; and Sharma and Meir [8].
Sharma and Meir also present error bounds for quintic spline interpolation.
In this paper, explicit error bounds are derived which sharpen those given in
[1,2,8]. The optimal error bounds for cubic (quintic) Hermite interpolation
given in [4] are applied to elements of the vector space Sp(2)(1T) (SPPl(1T), see
footnote 1) of cubic (quintic) splines over a mesh 1T, considered as a subspace,
[5], of the smooth Hermite space H(2)(1T), (H(3)(1T)).

For 1T: a = Xo < XI < ... < Xn = b, let h = mini{xi - Xi-I}, h = maxi {Xi~Xi_l}
and f3 = h/~. Let sex) be the cubic spline associated with a function j defined
on [a,b], and the mesh 1T. Thus, s is the unique element of Sp(2)(1T) such that
(i) s(xj) = j(xj),j = 0,1, ..., n; (ii) s'(xj) = j'(Xj),j = 0, n; and (iii) s E C2[a,b].
Further, let q(x) be the quintic spline (with three continuous derivatives)
associated withjand 1T. Thus, q is the unique element of SpP)(1T) such that
(i) q(xj)=j(xj ), j=O, 1, ... , n; (ii) q'(Xj ) = j'(Xj), j=O, 1, ... , n; (iii)
q(2)(Xj)=j(2)(X),j=0, n; and (iv) qE C 3 [a,b]. [If gis defined on [a,b], let
Ilgll = max{lg(x)!:a ~ X~ b}.]

The main results of this paper are contained in the following theorems, the
proofs of which are given in Sections 2 and 3.

THEOREM 1. Let s be the cubic spline associated with jE C 4 [a,b] and the
partitioning 1T. Then

1'=0,1,2,3 (1)

where EO = 5/384, t'I = (1/216)(9 + V)), t'2 = (1/12)(3f3 + 1), and E3 = (1/2)(f32 + 1).

1 In the foJlowing paper, quintic spline means an element of SpPl(1T) == P3(1T) n C 3[a,bl
whereP3(1T) is the space offunctions which reduce to quintic polynomials in each subinterval
[x"xHd. Thus in the notation of [51, Sp(3J(1T) = Spl3)(1T) n C4[a,b].
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THEOREM 2. Let q be the quintic spline associated with fE C 6 [a,b] and the
partitioning 7T. Then

r=O, 1, ... , 5 (2)

where EO' = 1/15,360, EI' = V5/30,000 + V3/12,960, E2' = 11/5,760,
EJ' = (1/60)(1/2 + f3), E4' = (1/60)(6 + 5f32), and ES' = (1/6)(3 + [32).

The Er in (1) are considerably less in magnitude than the corresponding
coefficients given in [1,2]. For example, in [1, p. 32], EJ = 3+8(1 +2f3)[32 (1 + 3f3)
and E2 = (5/3)EJ. In [2, p. 834], EJ = 3 + 6f3(f3 + 1)2 and Er = (r + I)Er+1 for
r = 2, 1, O.

In [8, p. 760], the authors prove, forfE CJ[a,b], that

r=0,1,2,3,

where w(f(3),.) is the modulus of continuity of f(3). In particular, if
fE C4 [a,b] then w(f(J),h) <; Ilf(4)llh, and the bounds in (1) are again sharper.

However, in [8, p. 759], the authors also prove, forfE C 2[a,b], that

Ils(2) - f (2)11 <; 5w(f (2), h). (3)

Now let s be a cubic spline such that the piecewise linear polynomial s(2)
interpolates to f (2) on 7T. The cubic spline associated with (f - s) and 7T is
clearly (s - s). Therefore, from (3),

But from [7], the error in the linear interpolation, Ilf(2) - s(2)11, IS
<; Ilf(4)II(h2/2). Thus

(3')

which yields a better bound than (1) for f3 > 59/3. This also establishes that
Ils(2) - f(2)11 = O(h2) independently of any restriction on the mesh ratio f3. The
author is indebted to Professor Carl de Boor for pointing out this latter result.

For quintic splines, it is also shown in [8, p. 764] that iffE CJ[a,b] then

r = 0,1,2,3. (4)

In particular, if fE C 4 [a,b] then w(f(3),h) <; Ilf(4)llh, and the bounds in (2)
are sharper.

However, if we let ij be a quintic spline such that ij(2) is the cubic spline
associated withf(2) and 7T, then from (1), lIij(3) - f(3)11 <; E,llf(6)llhJ. Now, the
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quintic spline associated with (f - q) and TT is clearly (q - q). Therefore, from
(4),

Ilq(3) - f(3)11 = ll(q(3) _4(3)) - (f(3) -4(3))11,,;; 26w(f(3) -4(3),11)

,,;; 52€lllf(6)IW, (4/)

which yields a better bound than (2) for f3 > 0/2)(259 + 260V3/9).
In Section 4, error bounds are presented for two-dimensional bicubic splines.

2. PROOF OF THEOREM 1

The proof of Theorem 1 is subdivided into a series of three lemmas. Since
s/(x) in general does not interpolate to f'(x) at Xi' i = 1, 2, ... , n - 1, it is
natural to consider first Is' (Xi) - f'(xi)l. For f E C 5[a,b] and a uniform mesh
TT, Birkhoff and de Boor [3] show this difference to be O(h4

). For arbitrary
meshes we have

LEMMA 1. Let TT be an arbitrary partitioning of [a,b]. IffE C 4 [a,b], thenfor
each mesh point Xi'

i=O, . .. , n. (5)

Proof The condition that S E e2 [a,b] for S a cubic in each subinterval is
equivalent to the following system of equations [3, p. 167]:

LlXi S;_l + 2(Llxi + LlXi_l) st' + LlXi_1 S;+l

= 3[Llxi(Llsi-dLlxi_a + LlXi_I(Llst/Llxi)] (6)

(i = 1,2, .. .,n - 1), where Llxj = Xj+ l -.Xj, Sj = s(xj), s/ = s/(xj), and
Llsj = Sj+l - Sj.

One can show directly, using Taylor's formula (see Chapter 11 of [7] for a
discussion on remainders) that

= 3[Llxi(Ll/;_dLlxi_l) + LlXi_I(Ll/;/Llxi)]

+ (1/24) f(4)(O[Llxi(Llxi_I)3 + LlXi_I(LlxY] (7)

(i = 1,2, .. .,n - 1), wherefj = f(xj),J/ = f'(x}) and Xj-l ,,;; gj";; XJ+1.
Since/; = Si' i = 0, ... , n, audit' = st', i = 0, n, we have from (6) and (7)

ME=Z, (8)
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where [E], = s/ - ft', [Z]I = (-1/24) f(4)(gl)[LlxtCdxl_I)3 + LlXI_I(Llxl)3] and

2(Llxo+LlxI),dxo 0
Ax, 2(AX'+A~

M ~ 0~ Ax._.~AX'~'X~-:X'_')
Multiply both sides of (8) by the diagonal matrix D, where

[D]1i = I/[2(Llx, +LlX,_I)]'

The matrix DM equals 1+ B, where IIBlloo = 1/2 and by [9, p. 61], it follows
that II(DM)-llloo";;; 2. The lemma follows from

IIElloo ,,;;; 211DZlloo";;; (1/24)11 f(4)11 h3•

If 1T is uniform and fE C5[a,b], the remainder [Z]I is obtained from the
error term in Simpson's Rule and equals (1/30)f(5)(gi)(Llx;)5 for some
X'_I ,,;;; gi";;; XI+I' The estimate (5) can then be replaced by

(5')

Note also that, under the weaker assumption fE C3[a,b], the remainder
[Z], equals (4/27) f(3)(g,)[Llxi(,dX,_I)2 + LlXI_I(Llxl)2], and so (5) can be re
placed by

(5")

The piecewise cubic Hermite polynomial U E H(2)(rr) associated withfand
1T is by definition the unique piecewise cubic polynomial of class C I [a, b] such
that (i) u(Xj) = f(xj),j = 0, 1, ..., nand (ii) u'(xj) = f'(Xj),j = 0, 1, ... , n. Let
x = x - XI-I and Ll = LlX,_I' For XI-I";;; X,,;;; Xi,

where

HI(x) = (1/Ll3)(2x3- 3Ll.e +Ll3),

H3(x) = (l/Ll2)(X3- 2Llx2+ Ll2 x)

Hix) = (-I/Ll3)(2x3- 3Llx2
),

and Hix) = (l/Ll2)(X3- Llx2).

The following optimal error bounds for cubic Hermite interpolation are
due to Birkhoff and Priver [4]:



ON ERROR BOUNDS FOR SPLINE INTERPOLATION 213

LEMMA 2. For fE C4[a,b],

Ilu(r) - f(r)!i 'i( IXr llf(4)11 h4 - r r=0,1,2,3, (9)

where IXo = 1/384, IXI = V3/216, IX2 = 1/12, and IX3 = 1/2.
Noting that s E Sp(2)(7T) ~ H(2)(71), we next investigate the pointwise dif

ference between s(r) and u(r).

LEMMA 3. For fE C4[a,b],

Itu(r) - s(r)11 'i( Yrll f (4)il h4 - r r=0,1,2,3, (10)

where Yo = 1/96, YI = 1/24, Y2 = 13/4, and Y3 = W/2.

Proof From Lemma 1 we have, for X i _ 1 'i( x 'i( Xi'

u(X) = sex) - HJC,i)[E]i-\ - Hix)[E]i'

Thus

(11)

One can then verify directly that the quantity in braces is bounded by ..1/4 for
r = 0; 1 for r = 1; 6/..1 for r = 2; and 12/..1 2 for r = 3.

The proof of Theorem 1 follows from (9), (10), and the triangle inequality.

3. PROOF OF THEOREM 2

The piecewise quintic Hermite polynomial v E H(3)(7T) associated withfand
7T is the unique piecewise quintic polynomial of class C2 [a, b] such that (i)
v(xj)=f(xj),j=O, 1, ... , n; (ii) v'(xj)=f'(x),j=O, 1, ..., n; and (iii)
V(2)(Xj) = f(2)(Xj),j = 0, 1, ..., n. For Xi _ 1 'i( X 'i( Xi'

vex) = LI(x) It-I +Lix) It + L 3(x) f;-I +L 4(x) It' +Ls(x) fl~1 +L 6(x) fF),

(12)
where

LI(x) = (1/..1 S)(..1 s - 10..1 2 x 3 + 15..1x4 - 6xS),

Lix) = (1/..1 S)(1O..1 2 x 3 - 15..1x4 + 6xS),

L 3(x) = (1/..1 4)(..1 4 X - 6..1 2 x 3 + 8..1x4
- 3xS),

Lix) = (1/..1 4)(-4..1 2 x 3 + 7..1x4
- 3xS),

Ls(x) = (1/2..1 3)(..1 3 x 2 - 3..1 2 x 3+ 3..1x4 - XS),

L 6(x) = (1/2..1 3)(..1 2 x 3 - 2..1x4 + XS),

and, as before, x = X - Xi_I and..1 = Xi - Xi-I'
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LEMMA 4. Let 7T be an arbitrary partitioning of[a,b]. !ffE C6[a,b], thenfor
each mesh point Xi'

i=O, ..., n. (13)

Proof Since q E H(3)(7T) we can use (12) to express q(x) on [Xi-I,xi] in terms
ofq(k)(Xj), k = 0, 1, 2;j = i-I, i. In particular, the condition that q E C 3[a, b],
i.e., q(3 )(Xi-) = q(3 )(xi+), i = 1, ... , n - 1, is equivalent to the following system
of equations:

-Llxiq!:')1 + 3(Llxi + LlXi_I)qF) - LlXi_1 qWI

= (4Llx;/(Llxi_I)2){5qt_1 - 5qi + 2Llxi_1 q;_1 + 3Llxi_1 q/}

+ (4Llxi_tl(Llxt)2){5ql+1 - 5qt - 2Llx t q;+1 - 3Llxiq/} (14)
(i = 1, ... , n - 1).

One shows directly, using Taylor's formula, that

-Llxif\~1 + 3(Llxi + LlXi_I) f\2) - Llxi_1f\~\

= (4Llxtf(Llxi_I)2){5/t_1 - 5/t + 2Llxi_If;_1 + 3Llxi_I};'}

+ (4Llxi_tl(Llxt)2){5/t+! - 5/t - 2Llxt/;+1 - 3Llxi};'}

+ (1/360) f (6)(tt){Llxi(Llxt_I)4 + LlXi_I(Llxi)4}

(i = 1,2, ... ,n -1), where Xj_1 < t j < Xj+!'
The remainder of the proof is omitted since it parallels the proof of Lemma

1.
Birkhoff and Priver [4] present the following optimal error bounds for

quintic Hermite interpolation:

LEMMA 5. For fE C6[a,b],

Ilv(r) - f (r)11 < O(/Ilf (6)11 h6 - r , 0< r < 5, (15)

where 0(0' = 1/46,080, 0(1' = VS/30,000, 0(2' = 1/1,920,::.:/ = 1/120, 0(4' = 1/10,
and 0(5' = 1/2.

The analogue of Lemma 3 for quintic splines is the following:

LEMMA 6. ForfE C6[a,b],

Ilv(r) - q(r)11 < y/llf(6)llh6-r, 0< r < 5, (16)

where Yo' = 1/23,040, yt' = V3/12,960, Y2' = 1/720, Y3' = fJ/60, Y4' = W/12,
and ys' = W/6.

Proof As in the proof of Lemma 3,

Ilv(r) - q(r)11 < (1/720)llf (6)11 h4{IILnl + IILlf)II}.
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One can verify that the quantity in braces is bounded by LF/32 for r = 0;
V3L1/18 for r = 1; 1 for r = 2; 12/.1 for r = 3; 60/.1 2 for r = 4; and 120/.1 3 for
r= 5.

The proof of Theorem 2 follows from (15), (16), and the triangle inequality.
Theorem 1 has the following corollary in light of (3'):

COROLLARY 1. As h -+ °(independently of any mesh restriction), s(r) con
verges uniformly toj<r) in [a,b]for r = 0,1,2; infact

r = 0,1,2.

After writing this paper, I discovered that Professor Carl de Boor had
established, by other means, the results given in Corollary 1. [See his thesis:
"The Method of Projections as Applied to the Numerical Solution of Two
Point Boundary Value Problems Using Cubic Splines," p. 36. University of
Michigan (1966).] He established the same order of convergence for the larger
class offunctionsj, for whichf(3) satisfies a Lipschitz condition.

Theorem 2 has the following corollary in light of (4'):

COROLLARY 2. As h -+°(independently of any mesh restriction), q(r) con
verges uniformly tof(r) in [a,b]for r = 0,1,2,3; infact,

r=0,1,2,3.

4. BICUBIC SPLINES

Two-dimensional bicubic splines were studied in [3,6].
Let1T: Xl =Xo < Xl < ... < Xn = X2 ; Yl = Yo <Yl < .. , <Ym = Y2 be a mesh

refinement of a rectangular region ~ = [Xl' X2 ] X [Yl , Y2 ]. The bicubic spline
s(x,y) associated with the function f(x,y) and the mesh 1T is the unique [6]
piecewise bicubic polynomial such that (i) sij = f/j, i = 0, ... , n; j = 0, 1, ... , m;
(ii)sl}'0) = fl}' 0), i = 0, n;j = 0, ... , m; (iii) slJ' 1) = n~' 1), i = 0, ... , n;j = 0, m;
(iv) sl}' 1) = fn, 1), i = 0, n; j = 0, m; and (v) s E C2[~]. Here and below,
glj' s) = (o(r+s) gloxroyS)(Xl>Y j)'

For the mesh 1T, let

h' = maxI (YI - Yi-l), ~' = mini (YI - Yi-l)

and let Jlgil = max{lg(x,Y)1 :(x,y) E ~}. The extension of Lemma 1 to the
two-dimensional case is then

LEMMA 7. lffE C4[~], thenfor each mesh point (XI,yj),

l(s(1,O) - f(1,O»(x l ,Yj)!';; (1/24)llf(4.0)llh3 , (17)
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(18)

I(S(I,I) - f(1, 1»(Xt>Yj)! < (4/27){llf(3,I)IIJi2 + Ilf(1, 3)II(Ji')2}

+ (l/4)llf(O,4)II«Ji')3/~). (19)

Proof The bounds in (17) and (18) are immediate consequences of Lemma 1
and the way in which s(1, O)(xi,Yj) and S(O,I)(Xi,Yj) are determined [6, p. 216].
It is also clear from (5") that

I(S(1,I) - f(I,I)(xi,Yj)1 < (4/27)llf(1, 3)II(Ji')2 (20)

for i = 0, n andj = 1,2, . 00' m - 1.
From [6] and (18), for j = 0, 1, ..., m,

Llxisl:-I~j + 2(Llxi + LlXi_I)Sg, I) + Llxi_1sl~I~)j

= 3[Llxi{(sl~,1) - sl~'I~WLlxi_d + Llxi_I{(sl~'I~)j - sl~·I)/Llxi}]

= 3[Llxi{(f\~' I) - fl~I~WLlxi-I} + Llxi-I{(fI~'I~)j - fl~,1)/Llx;}]

+ CPu (i = 1,2, ..., n- 1), (21)

where CPu is the error in the right-hand side induced by the errors (sl~' I) - f\~' I)

and ICPul « [1/4LlxiLlxi_tl(LlxL + Llx?)(Ji')3} II f (0, 4)11}.
With M as defined in Section 2, we have from (7), (20), and (21),

MEj = Zj + I.!Jj + epj, (22)

where [Ej]i = (sg, I)-fg, I), [epj]i = CPu, [l.!Jj]i=O for i#l, n-l,

[I.!JJI = LlxI(fb~' I) - Sb~' I), [I.!Jj]n-I = Llxn_2(f~}' I) - s~}, I»,

and
[Zj]i = (4/27)f(3,I)(gi)[Llxi(Llxi-I)2 + LlXi_I(Llxi)2].

Multiplying both sides of (22) by the matrix D of Section 2, we note that

IIDZlloo « (2/27)11 f(3, 1)11 Ji2, IIDI.!J jlloo « (2/27)llf (1, 3)II(Ji')2,

IIDepjllro « (1/8)llf(0.4)II(Ji')3/~, and II(DM)-lllro « 2.

The result (19) then follows immediately from

IIEjll oo « II(DM)-llloo{IIDZjlloo + IIDl.!Jlloo + IIDeplloo}·

The piecewise bicubic Hermite polynomial u associated withf and 1T is the
unique piecewise bicubic of class CI[~] such that u(r.s) interpolates to f(r,s),

for °« r, s « 1, at each mesh point of 1T. For a fixed i andj, let x = x - Xi-I>
ji = Y - Yj_1> Ll = LlXi_1 and Ll' = LlYj_I' For Xi-I « X « Xi and Yj-I « Y « Yl>

2 2
u(x,y)= L L {Hk(x)GtCji)fu+ Hk+ix)G(ji)f1}'O)

k~1 (-I
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wherefu = /i-Hk, i-Ht, .. ·,fU,I) = fl!:2~k, i-Hh the Hk(x) are given in Section
2,andGt Cji) is obtained from Ht(.x) by replacing x by jiandLl by LI', t = 1,2,3,4.
Comparing u(x,y) and s(x,y), we have:

LEMMA 8. For fE C4[~J and 0 <::;; i + j <::;; 3,

Ilu(i,j) - s(i,i)11 <::;; (1/24){B;nI1 f (4, 0)IIJi3 + Bij2 llf (0, 4JII(Ji')3}

+ Bii3{(4/27) [II f (3, I JII Ji2 + Ilf (1, 3JII(Ji')2J

+ (1/4)llf(O,4)!!(Ji')3jJi}
where

Bljl j=O j=1 j=2 j=3
---- --_.~.

i=O hj4 3h/4!l 3hj(!!:.')2 6hj(!!:.')3
i = 1 1 3/!!:.' 12/(!!:.')2
i=2 6/!!:. 18/hh'
i= 3 12/!!:.2

Bil2 equals 8m with h,!!:. interchanged with h' and !!:.', respectively, and

i=O
i = 1
i=2
i= 3

j=O

hli'/16
1i'/4
3h'/2h
3Ji'/2~2

j=1

hj4
1
6/!!:.

j=2

3Ji/2!!:.'
6/!!:.'

j=3

Proof In the spirit of the proof of Lemma 3 and using Lemma 7,

2 2
+ (1/24)llf (0, 4)II(h')3 L L IH~i)(x) GWiji)!

k~) t~l

+ [(4/27)(h21If(3, 1)11 + (h')211j<1,3)11)

+ (1/4)«Ji')3/!!:.)llf(O,4)IIJ

2 2 }
X k~l t~l IH~ZI(X) Gg l(ji)I .

To complete the proof, one computes directly the bounds 8ill , Bii2 , 8ljJ for
the three summations in this expression.
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COROLLARY 3. !ffE C4[&i!] and hlh is bounded as h -+ 0, then

flu - sll = O(h4
) as h -+ 0, (24)

where h = max {h,h'}. Further, if (h/~') and (h'@ are bounded as h -+ 0, then,
for 0 <. i +j <. 3,

Ilu(I,}) - sU'})11 = O(h4 -(I+}» as h -+ 0. (25)

Error bounds for bicubic Hermite interpolation are given in [10, Theorem 4
and Corollary 7] for f E K~[&i!];2 C4[&i!]. Combining these bounds with (24)
and (25), we have the following theorem establishing the uniform convergecen
of S(I,}) tofU,}) for 0<. i +j <.3.

THEOREM 3. Let s be the bicubic spline associated with f E C4[&i!] and the
partitioning 7T. !fhi~ is bounded as h -+ 0, then

as h -+0.

Further, if(h/~') and (h'/~) are bounded as h -+ 0, then,for °<. i + j <.3,

Ilil ,}) -fO'})11 = O(h4-(I+}) as h -+ 0.
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